查看原文
其他

Mol Psychiatry︱南通大学江波课题组揭示慢性应激通过HPA轴亢奋诱发抑郁样症状的新分子机理

江波 逻辑神经科学 2023-03-10


撰文︱江    波

责编︱王思珍,方以一

编辑︱王思珍


众所周知,抑郁症由生理、心理、遗传等多方面因素相互作用而致,其中慢性应激是重要诱因。多年研究表明下丘脑-垂体-肾上腺HPA的功能亢进参与抑郁症的神经生物学进程[1-3]。慢性应激使HPA轴释放过量糖皮质激素,后者持续高强度激动海马等脑区神经元的糖皮质激素受体,引起神经元萎缩、树突棘缺失、神经发生损伤、脑源性神经营养因子(BDNF)合成减少等症状[4-8]然而,慢性应激究竟通过何种分子机理促使下丘脑室旁核神经元合成释放过量促肾上腺皮质激素释放激素(CRH)并导致HPA轴亢奋,目前仍不明确。


已知CRH的生物合成受环磷酸腺苷反应元件结合蛋白CREB)调节[9],CREB功能受CREB转录调节共激活因子(CRTC1/2/3)调节[10-12],而CRTC1/2/3活性又由盐诱导激酶(SIK1/2/3)控制(SIK调控CRTC的转运入核,影响CRTC-CREB复合物的形成)[13-17]。已有数篇研究报道直接或间接证实,CRH的转录合成与HPA轴亢奋需要下丘脑核内CRTC与CREB的共同作用,它们之间是正相关的[18-20]。由此可以提出一个问题:慢性应激会不会就是通过影响下丘脑内的SIK表达,从而调控其核内CRTC-CREB复合物形成,进而大幅度促进CREB的活性功能,合成分泌过量CRH,引起HPA轴亢奋并最终诱发抑郁症呢?


2022年11月25日,南通大学药学院的江波课题组在《分子精神病学》Molecular Psychiatry)上发表了题为“Salt-inducible kinase 1-CREB-regulated transcription coactivator 1 signalling in the paraventricular nucleus of the hypothalamus plays a role in depression by regulating the hypothalamic-pituitary-adrenal axis”的研究论文,发现下丘脑室旁核SIK1通过正性调控CRTC1-CREB-CRH通路而促进HPA轴亢奋,并由此介导慢性应激诱发抑郁症之进程;过表达增加室旁核SIK1功能产生显著抗抑郁效应;且室旁核SIK1参与临床抗抑郁药物氟西汀、帕罗西汀、文拉法辛以及度洛西汀的药理作用。另外,该论文已被邀请作为期刊封面文章。



研究者首先发现(图1),慢性社会挫败应激(CSDS)与慢性不可预测温和应激(CUMS)这两种经典抑郁模型在诱发C57BL/6I小鼠抑郁样行为的同时,皆显著降低了下丘脑室旁核内SIK1的蛋白与mRNA表达水平(减少60%以上),而不影响室旁核内SIK1SIK3的蛋白与mRNA表达水平。随后,发现CSDSCUMS都显著升高了室旁核神经元的核内CRTC1蛋白水平,同时显著减少其胞浆pCRTC1Ser-151)水平,而不影响胞核CRTC2CRTC3以及胞浆pCRTC2Ser-171)与pCRTC3Ser-163)的水平。qRT-PCRCo-IP实验又相继发现CSDSCUMS皆大幅上升室旁核内的CRTC1-mRNA水平(增加50%左右)以及核内CRTC1-CREB结合水平。这初步表明PVN区SIK1-CRTC1通路参与慢性应激诱发抑郁症之过程。


1. 慢性应激显著改变小鼠下丘脑室旁核SIK1-CRTC1信号通路水平。

(图源:Wang Y, et al.Mol Psychiatry, 2022)

第二步(图2),研究者通过AAV-SIK1-shRNA-EGFP实现了对正常C57BL/6I小鼠的室旁核SIK1水平沉默(减少70%左右),随后的行为学测试发现其呈现出明显的快感缺乏、绝望无助、社交恐惧等抑郁样表现,而不影响自主活动性;之后的分子生物学检测表明此等行为伴随明显的室旁核CRH表达增加、核内CRTC1水平升高、胞浆pCRTC1水平下降以及核内CRTC1-CREB结合水平升高。Western blotting、免疫荧光与ELISA相继证实SIK1-shRNA沉默室旁核SIK1不仅明显减少海马与中间前额皮层区BDNF信号通路水平,减少海马神经发生水平,还显著增加血浆皮质酮与促肾上腺皮质激素(ACTH)释放水平(表明HPA轴亢奋)。这直接证明室旁核SIK1下调是抑郁症发生的重要诱因。

2. AAV病毒基因沉默正常小鼠室旁核SIK1表达可诱发诸多抑郁样症状。
(图源:Wang Y, et al.Mol Psychiatry, 2022)

第三步(图3&4),研究者使用AAV-SIK1-EGFP(过表达效果150%以上)来阻止CSDS与CUMS模型诱发的室旁核SIK1水平下降。相关行为学测试表明,AAV-SIK1-EGFP显著逆转了CSDS与CUMS应激导致的小鼠快感缺乏、绝望无助、社交恐惧等抑郁样行为;相关分子生物学实验证实,AAV-SIK1-EGFP显著逆转CSDS与CUMS引起的室旁核CRH表达增加、核内CRTC1水平上升、胞浆pCRTC1水平减少、核内CRTC1-CREB结合水平上升、海马与中间前额皮层区BDNF信号通路水平减少以及海马神经发生水平降低。进一步使用TAT-SIK1重组蛋白过表达室旁核SIK1,发现与AAV-SIK1-EGFP相似,TAT-SIK1也完全逆转了CSDS与CUMS导致的抑郁样行为以及诸多病理样症状。这直接证实以室旁核SIK1为干扰靶点可发挥抗抑郁效应。

图3. AAV病毒基因过表达抑郁模型小鼠室旁核SIK1水平逆转慢性应激诱发的抑郁样行为。
(图源:Wang Y, et al.Mol Psychiatry, 2022)

4. AAV病毒基因过表达抑郁模型小鼠室旁核SIK1水平逆转慢性应激诱发的抑郁样病理分子改变。
(图源:Wang Y, et al.Mol Psychiatry, 2022)

第四步(图5),发现氟西汀、帕罗西汀、文拉法辛与度洛西汀这些经典SSRI与SNRI抗抑郁药都显著逆转CSDS与CUMS导致的室旁核SIK1蛋白与mRNA水平减少、CRTC1-mRNA水平增加、核内CRTC1水平增加、胞浆pCRTC1水平减少以及核内CRTC1-CREB结合水平增加。反之,使用SIK1-shRNA沉默室旁核SIK1表达则导致氟西汀等药物再无法逆转CSDS与CUMS,产生抗抑郁效应。这进一步说明室旁核SIK1可作为抗抑郁靶点。

图5. 临床抗抑郁药物氟西汀与文拉法辛皆能逆转慢性应激对室旁核SIK1-CRTC1-CRH通路的影响。
(图源:Wang Y, et al.Mol Psychiatry, 2022)

图6. 工作总结图
(图源:Wang Y, et al.Mol Psychiatry, 2022)

文章结论与讨论,启发与展望
综上所述,研究者综合应用动物模型、行为学方法、分子生物学技术以及基因干预/过表达等各种方法,全面科学的研究探讨了下丘脑室旁核SIK-CRTC系统在抑郁症神经生物学中的作用,并得出结论:慢性应激通过减少室旁核SIK1表达,从而增加其核内CRTC1-CREB复合物形成,进而大幅度促进CREB的活性功能,合成分泌过量CRH,引起HPA轴亢奋并最终诱发抑郁症图6)。它不仅拓展了对抑郁症病理机制的研究认识,首次阐明了慢性应激导致HPA轴亢奋的内在分子机理,是“抑郁症HPA轴假说”的深化与补充;还直接证实室旁核SIK1是一有效可靠的新型抗抑郁靶点,开发选择性SIK1激动剂可成为未来抗抑郁药物研发新策略,具有显著临床价值与意义。

原文链接:https://pubmed.ncbi.nlm.nih.gov/36434056/

通讯作者 江波(照片提供自:南通大学药学院江波实验室)
通讯作者简介(上下滑动阅读)

江波,男,现工作于南通大学药学院,教授,博士生导师,中国药理学会会员,江苏省药理学会会员,华中科技大学基础医学院药理系博士,美国University of Iowa博士后。长期致力于抑郁症病理生理机制的相关研究,对寻找新型抗抑郁靶点及筛选新型抗抑郁药物有着浓厚的兴趣。已发表相关SCI研究论文40余篇,其中第一作者/通讯作者30余篇;获市厅级学术奖3项;正在主持或已结题国家级与省部级自然科学基金7项。该新闻中的研究工作得到国家自然科学基金(81873795)的支持


欢迎扫码加入逻辑神经科学 文献学习2群备注格式:姓名-单位-研究领域-学位/职称/称号/职位往期文章精选【1】Nat Commun︱陈忠/汪仪团队揭示星形胶质细胞参与癫痫发作的新机制【2】Cell Mol Life Sci︱李华伟/何英姿团队发现KDM5A有望成为感音神经性耳聋防治新靶点【3】综述文章推荐专题第一期︱Cell期刊神经科学领域最新前沿综述精选(2022年10月-11日)【4】Nat Immunol︱张志荣等人揭秘先天免疫激活新机制:NLRP3炎症小体感应内吞体应激下其组分的改变【5】CMLS︱周志东团队揭秘酪氨酸羟化酶-多巴胺通路在帕金森病中的病理机制
【6】Biol Psychiatry|小鼠自闭和精神分裂样行为新机制:CYFIP1调控NMDA受体复合物的翻译【7】Aging Cell︱张振涛团队揭示同型半胱氨酸修饰α-突触核蛋白在帕金森病中的作用【8】Hum Brain Mapp︱深圳先进院黄艳课题组揭示人类皮层下大细胞视觉通路新功能【9】Mol Psychiatry 综述︱社交隔离对脑发育、脑功能和行为的影响及其作用机制【10】iScience︱徐书华团队解析维生素B1代谢基因在东亚人群中的适应性进化NeuroAI 读书会【1】NeuroAI 读书会启动︱探索神经科学与人工智能的前沿交叉领域
优质科研培训课程推荐【1】膜片钳与光遗传及钙成像技术研讨会(2023年1月7-8日 腾讯会议)【2】第十届近红外训练营(线上:2022.11.30~12.20)【3】第九届脑电数据分析启航班(训练营:2022.11.23—12.24)欢迎加入“逻辑神经科学”【1】“ 逻辑神经科学 ”诚聘编辑/运营岗位 ( 在线办公)【2】“ 逻辑神经科学 ”诚聘副主编/编辑/运营岗位 ( 在线办公)【3】人才招聘︱“ 逻辑神经科学 ”诚聘文章解读/撰写岗位 ( 网络兼职, 在线办公)
参考文献(上下滑动阅读)

1. Juruena MF, Bocharova M, Agustini B, Young AH. Atypical depression and non-atypical depression: Is HPA axis function a biomarker? A systematic review. J Affect

Disord. 2017, [Epub ahead of print].

2.Fischer S, Macare C, Cleare AJ. Hypothalamic-pituitary-adrenal (HPA) axis functioning as predictor of antidepressant response-Meta-analysis. Neurosci Biobehav Rev. 2017, 83:

200-211.

3.Maric NP, Adzic M. Pharmacological modulation of HPA axis in depression - new avenues for potential therapeutic benefits. Psychiatr Danub. 2013, 25(3): 299-305.

4.Spiers JG, Chen HJ, Sernia C, Lavidis NA. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front

Neurosci. 2015, 8: 456. 

5.Chen H, Lombès M, Le Menuet D. Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells. Mol Brain. 2017, 10(1): 12.

6.Tanokashira D, Morita T, Hayashi K, Mayanagi T, Fukumoto K, Kubota Y, Yamashita

7.T, Sobue K. Glucocorticoid suppresses dendritic spine development mediated by down-regulation of caldesmon expression. J Neurosci. 2012, 32(42): 14583-14591.

8.Schoenfeld TJ, Gould E. Differential effects of stress and glucocorticoids on adult neurogenesis. Curr Top Behav Neurosci. 2013, 15: 139-164.

9.Wang N, Ma H, Li Z, Gao Y, Cao X, Jiang Y, Zhou Y, Liu S. Chronic unpredictable stress exacerbates surgery-induced sickness behavior and neuroinflammatory responses via glucocorticoids secretion in adult rats. PLoS One. 2017, 12(8): e0183077.

10.Andrisani OM. CREB-mediated transcriptional control. Crit Rev Eukaryot Gene Expr. 1999, 9(1): 19-32.

11.Saura CA, Cardinaux JR. Emerging Roles of CREB-Regulated Transcription Coactivators in Brain Physiology and Pathology. Trends Neurosci. 2017, 40(12): 720-733.

12.Bittinger MA, McWhinnie E, Meltzer J, Iourgenko V, Latario B, Liu X, Chen CH, Song C, Garza D, Labow M. Activation of cAMP response element-mediated gene expression by regulated nuclear transport of TORC proteins. Curr Biol. 2004, 14(23): 2156-2161.

13.Conkright MD, Canettieri G, Screaton R, Guzman E, Miraglia L, Hogenesch JB, Montminy M. TORCs: transducers of regulated CREB activity. Mol Cell. 2003, 12(2): 413-423.

14.Takemori H, Kajimura J, Okamoto M. TORC-SIK cascade regulates CREB activity through the basic leucine zipper domain. FEBS J. 2007, 274(13): 3202-3209. 

15.Phu do T, Wallbach M, Depatie C, Fu A, Screaton RA, Oetjen E. Regulation of the CREB coactivator TORC by the dual leucine zipper kinase at different levels. Cell Signal. 2011; 23(2): 344-353.

16.Horike N, Takemori H, Katoh Y, Doi J, Okamoto M. Roles of several domains identified in the primary structure of salt-inducible kinase (SIK). Endocr Res. 2002, 28(4): 291-294.

17.Katoh Y, Takemori H, Lin XZ, Tamura M, Muraoka M, Satoh T, Tsuchiya Y, Min L, Doi J, Miyauchi A, Witters LA, Nakamura H, Okamoto M. Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade. FEBS J. 2006, 273(12): 2730-2748.

18.Takemori H, Okamoto M. Regulation of CREB-mediated gene expression by salt inducible kinase. J Steroid Biochem Mol Biol. 2008, 108(3-5): 287-291.

19.Liu Y, Coello AG, Grinevich V, Aguilera G. Involvement of transducer of regulated cAMP response element-binding protein activity on corticotropin releasing hormone transcription. Endocrinology. 2010, 151(3): 1109-1118.

20.Martín F, Núñez C, Marín MT, Laorden ML, Kovács KJ, Milanés MV. Involvement of noradrenergic transmission in the PVN on CREB activation, TORC1 levels, and pituitary-adrenal axis activity during morphine withdrawal. PLoS One. 2012, 7(2): e31119.

21.Aguilera G, Liu Y. The molecular physiology of CRH neurons. Front Neuroendocrinol. 2012, 33(1): 67-84.



本文完

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存